Dedicator of cytokinesis 2, a novel regulator for smooth muscle phenotypic modulation and vascular remodeling.

نویسندگان

  • Xia Guo
  • Ning Shi
  • Xiao-Bing Cui
  • Jia-Ning Wang
  • Yoshinori Fukui
  • Shi-You Chen
چکیده

RATIONALE Vascular smooth muscle cell (SMC) phenotypic modulation and vascular remodeling contribute to the development of several vascular disorders such as restenosis after angioplasty, transplant vasculopathy, and atherosclerosis. The mechanisms underlying these processes, however, remain largely unknown. OBJECTIVE The objective of this study is to determine the role of dedicator of cytokinesis 2 (DOCK2) in SMC phenotypic modulation and vascular remodeling. METHODS AND RESULTS Platelet-derived growth factor-BB induced DOCK2 expression while modulating SMC phenotype. DOCK2 deficiency diminishes platelet-derived growth factor-BB or serum-induced downregulation of SMC markers. Conversely, DOCK2 overexpression inhibits SMC marker expression in primary cultured SMC. Mechanistically, DOCK2 inhibits myocardin expression, blocks serum response factor nuclear location, attenuates myocardin binding to serum response factor, and thus attenuates myocardin-induced smooth muscle marker promoter activity. Moreover, DOCK2 and Kruppel-like factor 4 cooperatively inhibit myocardin-serum response factor interaction. In a rat carotid artery balloon-injury model, DOCK2 is induced in media layer SMC initially and neointima SMC subsequently after vascular injury. Knockdown of DOCK2 dramatically inhibits the neointima formation by 60%. Most importantly, knockout of DOCK2 in mice markedly blocks ligation-induced intimal hyperplasia while restoring SMC contractile protein expression. CONCLUSIONS Our studies identified DOCK2 as a novel regulator for SMC phenotypic modulation and vascular lesion formation after vascular injury. Therefore, targeting DOCK2 may be a potential therapeutic strategy for the prevention of vascular remodeling in proliferative vascular diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PPARβ/δ, a Novel Regulator for Vascular Smooth Muscle Cells Phenotypic Modulation and Vascular Remodeling after Subarachnoid Hemorrhage in Rats

Cerebral vascular smooth muscle cell (VSMC) phenotypic switch is involved in the pathophysiology of vascular injury after aneurysmal subarachnoid hemorrhage (aSAH), whereas the molecular mechanism underlying it remains largely speculative. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has been implicated to modulate the vascular cells proliferation and vascular homeostasis. In the pr...

متن کامل

ADAR1-Mediated RNA Editing, A Novel Mechanism Controlling Phenotypic Modulation of Vascular Smooth Muscle Cells.

RATIONALE Vascular smooth muscle cell (SMC) phenotypic modulation is characterized by the downregulation of SMC contractile genes. Platelet-derived growth factor-BB, a well-known stimulator of SMC phenotypic modulation, downregulates SMC genes via posttranscriptional regulation. The underlying mechanisms, however, remain largely unknown. OBJECTIVE To establish RNA editing as a novel mechanism...

متن کامل

Cigarette Smoke Modulates Vascular Smooth Muscle Phenotype: Implications for Carotid and Cerebrovascular Disease

BACKGROUND The role of smooth muscle cell (SMC) phenotypic modulation in the cerebral circulation and pathogenesis of stroke has not been determined. Cigarette smoke is a major risk factor for atherosclerosis, but potential mechanisms are unclear, and its role in SMC phenotypic modulation has not been established. METHODS AND RESULTS In cultured cerebral vascular SMCs, exposure to cigarette s...

متن کامل

Imperatorin derivative OW1 inhibits the upregulation of TGF-β and MMP-2 in renovascular hypertension-induced cardiac remodeling

Chronic hypertension induces vascular and cardiac remodeling. OW1 is a novel imperatorin derivative that was previously reported to inhibit vascular remodeling and improve kidney function affected by hypertension. In the present study, the effect of OW1 on the cardiac remodeling induced by hypertension was investigated. OW1 inhibited vascular smooth muscle cell (VSMC) proliferation and the phen...

متن کامل

Angiogenic Factor With G Patch and FHA Domains 1 Is a Novel Regulator of Vascular Injury.

OBJECTIVE Phenotypic modulation of vascular smooth muscle cells represents a hallmark event in vascular injury. The underlying mechanism is not completely sorted out. We investigated the involvement of angiogenic factor with G patch and FHA domains 1 (Aggf1) in vascular injury focusing on the transcriptional regulation of vascular smooth muscle cell signature genes. APPROACH AND RESULTS We re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 116 10  شماره 

صفحات  -

تاریخ انتشار 2015